A4-ready • Use your browser's "Enregistrer en PDF" via Imprimer
FR — Niveau : lycée / début université
Cinétique Chimique
La cinétique chimique est l'étude de la vitesse des réactions chimiques et des mécanismes par lesquels elles se produisent. Elle permet de comprendre comment les facteurs comme la température, la concentration et les catalyseurs influencent la vitesse de réaction.
Loi de Vitesse
La loi de vitesse exprime la relation entre la vitesse d'une réaction et les concentrations des réactifs. Pour une réaction aA + bB → produits :
v = k [A]ᵐ [B]ⁿ
où k est la constante de vitesse, et m et n sont les ordres partiels.
Facteurs Influençant la Vitesse
Température : Augmente la vitesse (règle d'Arrhenius)
Concentration : Plus élevée = collisions plus fréquentes
Catalyseurs : Diminuent l'énergie d'activation
Surface de contact : Important pour les réactions hétérogènes
Exercices
Ex. 1 — Détermination d'ordre
Pour la réaction A + B → C, on mesure :
[A]=0.1M, [B]=0.2M → v=0.04 M/s
[A]=0.2M, [B]=0.2M → v=0.08 M/s
[A]=0.1M, [B]=0.4M → v=0.16 M/s
Trouvez l'ordre par rapport à A et B.
Ordre par rapport à A : quand [A] double (0.1→0.2), v double (0.04→0.08) → ordre 1
Ordre par rapport à B : quand [B] double (0.2→0.4), v quadruple (0.04→0.16) → ordre 2
Loi de vitesse : v = k [A]¹[B]²
Ex. 2 — Temps de demi-réaction
Pour une réaction d'ordre 1 avec k = 0.023 s⁻¹, calculez le temps de demi-réaction.
Pour une réaction d'ordre 1 : t₁/₂ = ln(2)/k
t₁/₂ = 0.693 / 0.023 = 30.1 secondes
EN — Level: high school / early university
Chemical Kinetics
Chemical kinetics is the study of reaction rates and the mechanisms by which chemical reactions occur. It helps understand how factors like temperature, concentration, and catalysts influence reaction rates.
Rate Law
The rate law expresses the relationship between reaction rate and reactant concentrations. For a reaction aA + bB → products:
v = k [A]ᵐ [B]ⁿ
where k is the rate constant, and m and n are partial orders.
Factors Affecting Rate
Temperature: Increases rate (Arrhenius equation)
Concentration: Higher = more frequent collisions
Catalysts: Lower activation energy
Surface area: Important for heterogeneous reactions
Exercises
Ex. 1 — Order determination
For reaction A + B → C, measurements show:
[A]=0.1M, [B]=0.2M → v=0.04 M/s
[A]=0.2M, [B]=0.2M → v=0.08 M/s
[A]=0.1M, [B]=0.4M → v=0.16 M/s
Find orders with respect to A and B.
Order wrt A: when [A] doubles (0.1→0.2), v doubles (0.04→0.08) → order 1
Order wrt B: when [B] doubles (0.2→0.4), v quadruples (0.04→0.16) → order 2
Rate law: v = k [A]¹[B]²
Ex. 2 — Half-life
For a first-order reaction with k = 0.023 s⁻¹, calculate the half-life.
ច្បាប់អត្រាបង្ហាញពីទំនាក់ទំនងរវាងអត្រាប្រតិកម្ម និងកំប្រុងសារធាតុប្រតិកម្ម។ ចំពោះប្រតិកម្ម aA + bB → ផលិតផល៖
v = k [A]ᵐ [B]ⁿ
ដែលkជាថេរអត្រា និងmនិងnជាលំដាប់ផ្នែក។
កត្តាប៉ះពាល់អត្រា
សីតុណ្ហភាព៖ បង្កើនអត្រា (សមីការ Arrhenius)
កំប្រុង៖ កាន់តែខ្ពស់ = ការទង្គិចកាន់តែញឹកញាប់
ឧប្បត្តិហេតុ៖ បន្ទាបថាមពលធ្វើអោយសកម្ម
តំបន់ផ្ទៃ៖ សំខាន់សម្រាប់ប្រតិកម្មចម្រុះ
លំហាត់
លំហាត់១ — ការកំណត់លំដាប់
សម្រាប់ប្រតិកម្ម A + B → C, ការវាស់វែងបង្ហាញ៖
[A]=0.1M, [B]=0.2M → v=0.04 M/s
[A]=0.2M, [B]=0.2M → v=0.08 M/s
[A]=0.1M, [B]=0.4M → v=0.16 M/s
រកលំដាប់ធៀបនឹង A និង B។
លំដាប់ធៀបនឹង A៖ ពេល [A] ទ្វេដង (0.1→0.2), v ទ្វេដង (0.04→0.08) → លំដាប់ 1
លំដាប់ធៀបនឹង B៖ ពេល [B] ទ្វេដង (0.2→0.4), v បួនដង (0.04→0.16) → លំដាប់ 2
ច្បាប់អត្រា៖ v = k [A]¹[B]²
លំហាត់២ — ពាក់កណ្ដាលអាយុ
សម្រាប់ប្រតិកម្មលំដាប់ទី១ដែលមាន k = 0.023 s⁻¹, គណនាពាក់កណ្ដាលអាយុ។